Matching Large-Scale pCO₂ in Scale-Down Models: A Practical Manuscript

Abstract

Large-scale mammalian cell culture often runs at higher dissolved CO_2 partial pressure (pCO_2) than bench or pilot scale due to geometry-driven mass transfer and gas holdup differences. Failing to reproduce large-scale pCO_2 in a scale-down model (SDM) can bias pH control, buffer utilization, lactate/pyridine nucleotide metabolism, product quality, and CQAs. This manuscript unifies (i) a semi-empirical bicarbonate– CO_2 –lactate acid–base balance to compute the equilibrium dissolved CO_2 required at a given pH setpoint and buffer state and (ii) a headspace overlay blending model to set the overlay $%CO_2$ (and/or flow) that attains a target gas-phase pCO_2 (e.g., 100 mmHg) observed at commercial scale. The result is an SDM recipe you can use directly in Excel or code to match large-scale pCO_2 while maintaining the intended pH and buffer equivalents.

1. Background and Problem Statement

At production scale, bioreactors frequently exhibit dissolved pCO $_2 \approx 80$ –120 mmHg because of increased gas holdup, longer bubble residence time, deeper headspace, and different gas-liquid interfacial dynamics. In contrast, lab-scale vessels with high sweep and efficient stripping often stabilize around 40–60 mmHg unless enriched. When pCO $_2$ is not matched, SDMs underestimate acid load from carbonic acid, overestimate apparent base capacity, and may misrepresent lactate dynamics and glycosylation outcomes.

Goal: Provide a reproducible method to (1) compute the required dissolved CO_2 for a target pH given lactate and inorganic carbon pools, and (2) prescribe overlay $%CO_2$ and flow to achieve a specified gas-phase pCO_2 (e.g., the 100 mmHg measured at large scale), even when the sparge remains air.

Assumptions

A) Core chemistry

- Fixed temperature = 37 °C: Constants are set for 37 °C (pK'a \approx 6.10; Henry's constant $H_{37} \approx 0.0309$ mM/mmHg). Update them if temperature changes.
- Henderson–Hasselbalch applies to CO₂/HCO₃⁻: pH is governed by carbonic acid vs. bicarbonate/carbonate. Accuracy drops with very strong non-carbonate buffers or rapid transients.

- Base equivalents only from bicarbonate/carbonate: We use $B_{eq} = [HCO_3^-] + 2[CO_3^2]$. Other buffers (phosphate, amines) are ignored unless you extend the model.
- Lactate is an acid load: Lactate (g/L) is converted to mM on the anion basis (MW 89.07). If your assay reports lactic acid, use MW 90.08.

B) Linking liquid and gas CO₂

- Henry's law is linear at 37 °C: $dCO_2 = H_{37} \times pCO_2$. Media composition/foaming can shift effective solubility.
- Headspace pressure \approx 1 atm unless specified: Gas fraction $y_{\rm base} = \frac{p{\rm CO}_{2,{\rm base}}}{P_{\rm tot}}$

use actual P_tot if reactor is pressurized or under vacuum.

C) Headspace overlay blending

• Steady state; CER cancels using baseline: We eliminate unknown CO₂ evolution by referencing the baseline, leading to

$$X_{ol} = y^* + \frac{Q_{sp}}{Q_{ol}}(y^* - y_{\text{base}})$$

- Well-mixed headspace: Overlay gas mixes before exhaust; poor mixing can cause off-gas lag vs. true headspace.
- Sparge is CO_2 -free (air/air+ O_2) in the basic model: If sparge contains CO_2 , include it explicitly in the balance.

D) Scale-down fidelity

- Large-scale pCO_2^* is the target to reproduce: Use the measured plant headspace pCO_2 (e.g., 100 mmHg) as the benchmark; ensure probe placement/pressure are accurate.
- Mass transfer in SDM must be sufficient: If headspace pCO₂ matches but dCO₂ is low, increase overlay flow or %CO₂, or reduce total sweep (limit stripping).

E) Control & dosing simplifications

• Base top-up via bicarbonate/carbonate: Raising dCO_2 adds acid load; offset with $NaHCO_3$ (1 mEq/mM) or Na_2CO_3 (2 mEq/mM). Account for any strong-base pH control if present.

• Hold pH at the setpoint: All calculations assume the controller maintains the chosen pH (e.g., 7.10). Slow/saturated control will deviate.

2. Acid-Base Model (CO₂-Bicarbonate-Carbonate-Lactate)

We adapt the widely used semi-empirical formulation for bicarbonate-buffered media (37 °C). Let all concentrations be in **mM**.

2.1 Working balance

$$10^{(pH-pK_{a,CO2})} = \frac{B_{eq} - L}{dCO_2} \Rightarrow dCO_{2,req} = \frac{B_{eq} - L}{10^{(pH-pK_{a,CO2})}}$$

Where,

dCO₂=dissolved CO₂ in liquid (mM)

L=Lactate (mM)

 $B_{eq} = [HCO_{3}] + 2[CO_{3}] (mM);$

 $pK_{a,CO2} \approx 6.10$ at 37 °C (tune ± 0.050-0.10 depends on cell culture medium).

Interpretation. For a fixed pH setpoint, rising lactate increases acid equivalents and therefore increases the required dissolved CO_2 to satisfy (1) unless B_{eq} is augmented by bicarbonate/carbonate addition.

2.2 Lactate unit conversion (when reported in g/L)

$$L[mM] = \begin{cases} 1000 \cdot \frac{\text{lactate (g/L)}}{89.07} & \text{(lactate anion)} \\ 1000 \cdot \frac{\text{lactic acid (g/L)}}{90.08} & \text{(as acid)} \end{cases}$$
(2)

3. Linking Dissolved CO₂ to Gas-Phase CO₂

At 37 °C:

$$dCO_2 \text{ [mM]} = H_{37} \left[\frac{\text{mM}}{\text{mmHg}} \right] \cdot pCO_2 \text{ [mmHg]}; H_{37} \approx 0.0309$$
 (3)
 $pCO_2 \text{ [mmHg]} \approx 7.6 \times \%CO_2 \text{ (gas)}$ (4)

Combining (3) and (4):

$$dCO_2 \text{ [mM]} \approx 0.23484 \times \%CO_2 \text{ (gas)} \Rightarrow \%CO_2 \approx \frac{dCO_2}{0.23484}$$
 (5)

4. Headspace Overlay Blending to Match Large-Scale pCO2

You observe: large scale $pCO_2^{\prime *} = 100$ mmHg; SDM baseline pCO_2 , base = 55 mmHg. Let:

- Q_{sp} = sparge flow (air),
- Q_{ol} = overlay flow,
- X_{ol} = overlay CO_2 fraction to be set,
- y* is the target CO2 fraction based on large scale. $y^* = pCO_2^*/760$
- y_{base} is simply the baseline mole fraction (or %) of CO₂ in the small scale.
 We get it by converting the baseline CO₂ partial pressure (in mmHg) to a fraction of total pressure:

$$y_{\text{base}} = \frac{p\text{CO}_{2,\text{base}}}{P_{\text{tot}}}$$

• If the reactor headspace is at ~1 atm absolute, $P_{\rm tot} \approx 760$ mmHg. That's why you saw $y_{\rm base} = p{\rm CO}_{\rm 2.base}/760$.

Example: $p\text{CO}_{2,\text{base}} = 55 \text{ mmHg} \Rightarrow$ $y_{\text{base}} = 55/760 = 0.0724 = 7.24\% \text{ CO}_2 \text{ in the headspace.}$

Using a steady-state headspace material balance while eliminating unknown CER with the baseline condition yields a practical prescription:

$$X_{ol} = y^* + \frac{Q_{sp}}{Q_{ol}} (y^* - y_{\text{base}})$$
 (6)

Feasibility: If $X_{ol} > 1$, increase Q_{ol} , or increase the oxygen proportion in sparger to reduce Q_{sp} .

5. SDM Implementation Workflow

Inputs

- pH setpoint; measured/forecast lactate; bicarbonate and carbonate (mM).
- Large-scale target pCO₂ (e.g., 100 mmHg).
- SDM baseline pCO₂ (without CO2 enrichment in the overlay) and gas flows Q_{sp} , Q_{ol} .

Step 1 — Acid-base requirement

Compute $B_{eq} = [HCO_3^-] + 2[CO_3^{2-}].$

From (1), evaluate dCO_2 , reqfor the chosen pH.

- If $B_{\rm eq}-L\leq 0$, base is deficient; trim in bicarbonate/carbonate before pCO₂ matching.
- Otherwise, proceed.

Step 2 — Gas-phase target and expected dissolved CO₂

From the large-scale target pCO_2^* , compute

$$dCO_2^* = H_{37} \cdot pCO_2^*$$
; $H_{37} \approx 0.0309$ mmHg/ mM at 37 \circ C

Example (at $pCO_2^* = 100$ mmHg):

$$dCO_2^* = 0.0309 \times 100 = 3.09$$
 mM.

Check that dCO_2 and dCO_2 , require **compatible** with your pH and buffers. If not, adjust B_{eq} (bicarbonate/carbonate) or consider a slightly different pCO₂ target with justification.

Step 3 — Overlay CO₂ setpoint

Measure/estimate the SDM ${\bf baseline}$ headspace ${\rm CO_2}$ fraction

$$y_{\text{base}} = \frac{p \text{CO}_{2,\text{base}}}{P_{\text{tot}}}.$$

With sparge flow Q_{sp} (air) and overlay flow Q_{ol} , set the required **overlay CO₂ fraction** X_{ol} by

$$X_{ol} = y^* + \frac{Q_{sp}}{Q_{ol}}(y^* - y_{\text{base}})$$

and convert to $\%CO_2$ for the MFC: $\%CO_2^{\text{overlay}} = 100 X_{ol}$.

(If $X_{ol} > 1$, increase Q_{ol} , decrease Q_{sp} , or add CO_2 to the sparge.)

6. Illustrative Example

Given

- pH = 7.10
- Lactate = 1.8 g/L
- Bicarbonate = 29 mM;
- Carbonate = 0 mM
- $pK'_{a} = 6.10$
- $H_{37} = 0.0309 \, \text{mM/mmHg}$
- Large Scale Target pCO₂* = 100 mmHg
- SDM baseline $pCO_2 = 55 \text{ mmHg}$
- $Q_{sp} = 0.002$ vvm
- $Q_{ol} = 0.02$ vvm

Step 1 — Check Acid-base requirement (unchanged)

$$R = 10^{(pH-pKa)} = 10^{(7.10-6.10)} = 10$$

 dCO_2 , req = $\frac{B-L}{R} = (29-20.2)/10 = \mathbf{0}$. 88 m

This just tells you: at pH 7.10, given B_{eq} and L, you'd "naturally" sit at **0.88 mM dCO₂**. Which is lower than the target of **3.09 mM**. So Top of base is required.

Step 2: Bicarbonate top-up Requirements?

What is a base trim?

When you raise dCO_2 (e.g., to match plant $pCO_2 = 100 \text{ mmHg} \rightarrow dCO_2^* \approx 3.09 \text{ mM}$), you add carbonic-acid load. To keep **pH 7.10** at the same lactate and buffer, you must add **extra base equivalents** (usually NaHCO₃ or a little Na₂CO₃). That addition is the **base trim**.

How much base?

Use the bicarbonate balance (37 °C):

$$dCO_2$$
, req = $\frac{B_{eq} - L}{10^{(pH - pK'_a)}}$ $\Rightarrow B_{eq,needed} = L + dCO_2^* 10^{(pH - pK'_a)}$

Where
$$B_{eq} = [HCO_3^-] + 2[CO_3^{2-}].$$

Given

pH = 7.10,
$$pK_a' = 6.10 \Rightarrow 10^{(\text{pH}-pK_a')} = 10$$

Lactate $L = 20.2 \text{mM}$
Current $B_{\text{eq}} = 29 \text{mM}$ (29 mM HCO₃⁻, no CO₃²⁻)
Target $d\text{CO}_2^{\ *} = 3.09 \text{mM}$

Compute

$$B_{\rm eq,needed} = 20.2 + (3.09 \times 10) = 51.1 \,\mathrm{mM}$$

 $\Delta B_{\rm eq} = B_{\rm eq,needed} - B_{\rm eq,current}$
 $= 51.1 - 29 = 22.1 \,mM$

Convert to a practical addition

As NaHCO₃ (1 mEq base per 1 mM): add 22.1 mM NaHCO₃
 → grams/L: 22.1 mmol/L × 84.01 mg/mmol = 1.8g/L

• As Na₂CO₃ (2 mEq base per 1 mM): so 22.1 mM/2 = 11.05 mM Na₂CO₃ \rightarrow grams/L (anhydrous): $11.05 \times 105.99 = 1.17 g/L$

Step 3 — Overlay CO₂ setpoint

Large scale target: $pCO_2^{\star} = 100$ mmHg

$$\Rightarrow y^* = 100/760 = 0.1316$$

SDM baseline: $pCO_{2,base} = 55 \text{mmHg}$

$$\Rightarrow y_{\text{base}} = 55/760 = 0.0724$$

SDM flows: $Q_{sp}=0.002 \mathrm{vvm}$, $Q_{ol}=0.02 \mathrm{vvm}$

$$\Rightarrow Q_{sp}/Q_{ol} = 0.1$$

Use

$$X_{ol} = y^* + \frac{Q_{sp}}{Q_{ol}}(y^* - y_{\text{base}})$$

Compute:

•
$$y^* - y_{\text{base}} = 0.1316 - 0.0724 = 0.0592$$

•
$$\frac{Q_{sp}}{Q_{ol}} = 0.002/0.02 = 0.1$$

So,

$$X_{ol} = 0.1316 + 0.1 \times 0.0592 = 0.1316 + 0.00592 = \mathbf{0.13752}$$

$$\Rightarrow$$
%CO₂ in overlay = $100 \times X_{ol} \approx 13.75\%$

(Feasible; well below 100%. If headspace/dCO $_2$ still lag due to stripping, raise Q_{ol} slightly or nudge X_{ol} up.).

Appendix A

Rationale for omitting $k_L \alpha$ from the SDM pCO₂ model.

Our objective is a **setpoint** problem: reproduce the large-scale headspace $p\mathrm{CO}_2$ and maintain pH at the chosen setpoint. At steady state, the required quantities are governed by **gas composition and equilibrium** (overlay fraction/flows and Henry's law), not by transfer *rates*. Accordingly, we (i) prescribe the overlay $%\mathrm{CO}_2$ to attain the target headspace fraction $y^* = p\mathrm{CO}_2^*/P_{\mathrm{tot}}$, and (ii) compute the **base equivalents** needed to hold pH given $d\mathrm{CO}_2$, lactate, and bicarbonate/carbonate.

We **do not explicitly include** $k_L a$ for two practical reasons:

- 1. Headspace setpoint is independent of k_La . The steady-state headspace composition results from inlet gas fractions and overlay/sparge flows. k_La influences the *rate* at which the liquid approaches equilibrium, not the headspace composition we set.
- 2. Bench-scale transfer is not rate-limiting under our conditions. In <5 L reactors operated here, $d\text{CO}_2$ closely tracks H_{37} $p\text{CO}_2$ at steady state (rapid step responses; $d\text{CO}_2^{\text{meas}}/H_{37}p\text{CO}_2\approx 1$). Thus, mass transfer is sufficiently fast that CO_2 is not limiting for the steady-state setpoints we target.

As a safeguard, we **empirically verify** that measured $d\mathrm{CO}_2$ matches the equilibrium value implied by the headspace. If stripping or dynamics cause a systematic shortfall, we correct operationally—**increasing overlay** $%\mathrm{CO}_2$ **or** Q_{ol} , or reducing total sweep—without introducing an uncertain $k_L a$ parameter. We would include $k_L a$ only for **transient predictions**, **co-sparged** CO_2 , or scenarios where **steady-state** $d\mathrm{CO}_2$ **deviates materially from equilibrium**.