

Pseudo-CFD Model for Impeller Mixed Stirred Tank Bioreactor for Energy Dissipation Rate (EDR)

1. Purpose of the Model

The goal is to estimate local shear rate $(\dot{\gamma})$ and energy dissipation rate (ϵ) distribution inside a mixing tank without running CFD. This helps predict zones of high and low mixing intensity, average vs. maximum EDR, and scale-up comparability between reactors.

2. Core Assumptions

Concept Simplif	fied Assumption in Model
-----------------	--------------------------

Fluid Type Newtonian (viscosity constant, water-like:

 $\mu = 0.001 \text{ Pa·s}$

Density (ρ) Constant throughout volume

Impeller Power Estimated by classic correlation $P = Np \rho N^3$

 D^5

Flow Pattern Approximated by a Gaussian intensity field

(no CFD mesh solving)

Shear Rate Estimated locally from power density $\dot{\gamma} \approx$

 $\sqrt{(\epsilon/\nu)}$

Energy Dissipation Derived from $\varepsilon = \mu \gamma^2$

Boundary & Baffles Ignored (axisymmetric assumption)

3. Step-by-Step Logic

Step 1: Input & Geometry

- The user provides tank diameter (T), liquid volume (V), and impeller data (diameter, speed, clearance, power number).
- Tank height *H* is computed from the volume:

$$H = \frac{V}{\pi(R)^2}$$

where R = T/2.

Step 2: Impeller Power Calculation

Each impeller contributes mechanical power:

$$P_i = N_{p,i} \rho N^3 D_i^5$$

All impellers' power adds up to total:

$$P_{total} = \sum P_i$$

Then, the global power density (P/V) is:

$$\frac{P_{total}}{V}$$

This represents an average EDR in the entire tank.

Page 2 of 6

Step 3: Define Spatial Grid (Pseudo-CFD Field)

- The tank is divided into a 2D grid ($r \times z = 50 \times 50$ cells).
- Each cell represents a small annular volume $dV = 2\pi r dr dz$.
- Arrays intensity[j][i] hold local "power density proxy" values.

Step 4: Local Power Distribution Around Impellers

Each impeller produces a *Gaussian decay* of power with distance from its center (r,z):

$$\varepsilon(r,z) = \varepsilon_0 \exp\left[-\left(\frac{r}{0.75D}\right)^2 - \left(\frac{z-z_i}{0.6D}\right)^2\right]$$

where

- $\varepsilon_0 = P_i/V$ = average contribution from that impeller
- z_i = clearance height
- *D*= impeller diameter

This defines an energy "cloud" centered around each impeller.

Step 5: Compute Shear and Local EDR

Page **3** of **6**

CFD Model for Impeller Mixed Stirred Tank Bioreactor for Energy Dissipation Rate (EDR)

Bench2Batch Insights | Technical White Paper Series

Once local ε (power density) is estimated for every grid cell:

Shear rate is approximated from local ε and kinematic viscosity (v):

$$\dot{\gamma} = \sqrt{\frac{\varepsilon}{\nu}}$$

EDR (Energy Dissipation Rate) is then:

$$\varepsilon_{local} = \mu \dot{\gamma}^2$$

Thus, each grid point gives:

- Local shear rate (1/s)
- Local EDR (W/m³)

Step 6: Compute Averages

Two averages are calculated:

1. Simple arithmetic mean

$$\bar{\varepsilon}_{simple} = \frac{1}{N} \sum \varepsilon_{local}$$

Page 4 of 6

2. Volume-weighted mean

(EDR)

$$\bar{\varepsilon}_{vol} = \frac{\sum \varepsilon_{local} V_{cell}}{\sum V_{cell}}$$

This is directly comparable to P/V from power balance.

The maximum EDR (ϵ _max) is also tracked to capture the most energetic (or shear-intensive) zone in the tank.

7. Physical Interpretation

Parameter	Meaning	Significance
${\tt avgEDR_W_m3_volumeWeighted}$	Volume-weighted mean EDR	Comparable to mechanical P/V, good for scale- up
maxEDR_W_m3	Maximum EDR in domain	Indicates shear "hot spots" that may damage cells or proteins
avgShearRate_1_per_s	Mean flow-averaged shear rate	Related to overall mixing intensity
maxShearRate_1_per_s	Peak shear rate	Predicts cell damage potential

8. Strengths and Limitations

Strengths: Fast, physics-based, CFD-like, suitable for comparative and scaling studies.

Limitations: Axisymmetric, no turbulence model, assumes Newtonian fluid, ignores baffles and free-surface effects.

9. Practical Use

The model helps compare impeller designs, estimate energy uniformity, assess scale-up consistency, and visualize pseudo-CFD contour plots in Retool dashboards or process reports.